Special Families of Magic Sets

Agnieszka Widz
Łódź University of Technology

Winter School in Abstract Analysis, Hejnice, Febuery 2022

Cinderella

Agnieszka Widz
Special Families of Magic Sets

Introduction

Definition (Berarducci, Dikranjan, 1993)

Given a family of functions $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ we say that set $M \subset \mathbb{R}$ is magic for \mathcal{F} if for any $f, g \in \mathcal{F}$ we have

$$
f[M] \subset g[M] \Longrightarrow f=g
$$

Equivalently

$$
f \neq g \Longrightarrow f[M] \nsubseteq g[M]
$$

Result by Berarducci and Dikranjan

Theorem

Assume $\operatorname{add}(\mathcal{M})=\mathfrak{c}$. There exists $2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}-continuous, nowhere constant.

Result by Berarducci and Dikranjan

Theorem

Assume $\operatorname{add}(\mathcal{M})=\mathfrak{c}$. There exists $2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}-continuous, nowhere constant.

Sketch of the proof

Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way

Result by Berarducci and Dikranjan

Theorem

Assume $\operatorname{add}(\mathcal{M})=\mathfrak{c}$. There exists $2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}-continuous, nowhere constant.

Sketch of the proof

Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way

- we find x_{0} for pair $\left(f_{0}, g_{0}\right)$ such that $f_{0}\left(x_{0}\right) \neq g_{0}\left(x_{0}\right)$

Result by Berarducci and Dikranjan

Theorem

Assume $\operatorname{add}(\mathcal{M})=\mathfrak{c}$. There exists $2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}-continuous, nowhere constant.

Sketch of the proof

Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way

- we find x_{0} for pair $\left(f_{0}, g_{0}\right)$ such that $f_{0}\left(x_{0}\right) \neq g_{0}\left(x_{0}\right)$
- we find x_{1} for pair $\left(f_{1}, g_{1}\right)$ such that $f_{1}\left(x_{1}\right) \neq g_{1}\left(x_{1}\right)$

Result by Berarducci and Dikranjan

Theorem

Assume $\operatorname{add}(\mathcal{M})=\mathfrak{c}$. There exists $2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}-continuous, nowhere constant.

Sketch of the proof

Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way

- we find x_{0} for pair $\left(f_{0}, g_{0}\right)$ such that $f_{0}\left(x_{0}\right) \neq g_{0}\left(x_{0}\right)$
- we find x_{1} for pair $\left(f_{1}, g_{1}\right)$ such that $f_{1}\left(x_{1}\right) \neq g_{1}\left(x_{1}\right)$ And... we have a problem.

problem

problem

Main Theorem

Theorem
$(\operatorname{add}(\mathcal{M})=\mathfrak{c}) \exists 2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}.
Sketch of the proof
Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way:

- we find x_{0} for pair $\left(f_{0}, g_{0}\right)$ such that $f_{0}\left(x_{0}\right) \neq g_{0}\left(x_{0}\right)$
- we find x_{1} for pair $\left(f_{1}, g_{1}\right)$ such that $f_{1}\left(x_{1}\right) \neq g_{1}\left(x_{1}\right)$ And... we have a problem.
- all x 's are different,
- $f_{\alpha}\left(x_{\alpha}\right) \neq g_{\alpha}\left(x_{\alpha}\right)$
- $x_{\alpha}^{0}, x_{\alpha}^{1} \notin A_{\alpha} \cup B_{\alpha}$, where

Main Theorem

Theorem

$(\operatorname{add}(\mathcal{M})=\mathfrak{c}) \exists 2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}.

Sketch of the proof

Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way:

- we find x_{0} for pair $\left(f_{0}, g_{0}\right)$ such that $f_{0}\left(x_{0}\right) \neq g_{0}\left(x_{0}\right)$
- we find x_{1} for pair $\left(f_{1}, g_{1}\right)$ such that $f_{1}\left(x_{1}\right) \neq g_{1}\left(x_{1}\right)$ And... we have a problem.
- all x 's are different,
- $f_{\alpha}\left(x_{\alpha}\right) \neq g_{\alpha}\left(x_{\alpha}\right)$
- $x_{\alpha}^{0}, x_{\alpha}^{1} \notin A_{\alpha} \cup B_{\alpha}$, where
$A_{\alpha}=\bigcup_{\beta<\alpha} f_{\beta}^{-1}\left[\left\{g_{\beta}\left(x_{\beta}\right)\right\}\right] \cup g_{\beta}^{-1}\left[\left\{f_{\beta}\left(x_{\beta}\right)\right\}\right]$
$B_{\alpha}=\bigcup_{\beta<\alpha} f_{\alpha}^{-1}\left[\left\{g_{\alpha}\left(x_{\beta}\right)\right\}\right] \cup g_{\alpha}^{-1}\left[\left\{f_{\alpha}\left(x_{\beta}\right)\right\}\right]$

Main Theorem

Theorem

$(\operatorname{add}(\mathcal{M})=\mathfrak{c}) \exists 2^{\mathfrak{c}}$ many different magic sets for the family \mathcal{F}.

Sketch of the proof

Enumerate all pairs $(f, g), f \neq g, f, g \in \mathcal{F}$.
By transfinite induction we construct a magic set in the following way:

- we find x_{0} for pair $\left(f_{0}, g_{0}\right)$ such that $f_{0}\left(x_{0}\right) \neq g_{0}\left(x_{0}\right)$
- we find x_{1} for pair $\left(f_{1}, g_{1}\right)$ such that $f_{1}\left(x_{1}\right) \neq g_{1}\left(x_{1}\right)$ And... we have a problem.
- all x 's are different,
- $f_{\alpha}\left(x_{\alpha}\right) \neq g_{\alpha}\left(x_{\alpha}\right)$
- $x_{\alpha}^{0}, x_{\alpha}^{1} \notin A_{\alpha} \cup B_{\alpha}$, where
$A_{\alpha}=\bigcup_{\beta<\alpha} f_{\beta}^{-1}\left[\left\{g_{\beta}\left(x_{\beta}\right)\right\}\right] \cup g_{\beta}^{-1}\left[\left\{f_{\beta}\left(x_{\beta}\right)\right\}\right]$
$B_{\alpha}=\bigcup_{\beta<\alpha} f_{\alpha}^{-1}\left[\left\{g_{\alpha}\left(x_{\beta}\right)\right\}\right] \cup g_{\alpha}^{-1}\left[\left\{f_{\alpha}\left(x_{\beta}\right)\right\}\right]$
$\forall \varphi: \mathfrak{c} \rightarrow 2$ let $M_{\varphi}:=\left\{x_{\eta}^{\varphi(\eta)}: \eta<\mathfrak{c}\right\}$. All M_{φ} 's are magic for \mathcal{F}.

Loooong tree

Independent family

Independent family

A family $\mathcal{A} \subseteq \mathcal{P}(X)$ of subsets of X is called independent if whenever we have distinct $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m} \in \mathcal{A}$ then

$$
A_{1} \cap \ldots \cap A_{n} \cap\left(X \backslash B_{1}\right) \cap \ldots \cap\left(X \backslash B_{m}\right) \neq \emptyset
$$

Fichtenholz-Kantorowicz Theorem

For every set of carnality $\kappa \geqslant \aleph_{0}$ There exists a independent family of its subset of carnality 2^{κ}.

Bibliography

L. Halbeisen, M. Lischka, S. Schumacher, Magic Sets, Real Anal.

Exchange 43 (2018), no. 1, 187-204.
H. Diamond, C. Pomerance, L. Rubel, Sets on which an entire function is determined by its range, Math Z. 176 (1981), 383-398. A. Berarducci, D. Dikranjan, Uniformly approachable functions and UA spaces, Rend. Ist. Matematico Univ. di Trieste 25 (1993), 23-56.
M. Burke, K. Ciesielski, Sets of range uniqueness for classes of continuous functions, Proc. of the Amer. Math. Soc. 127 (11), 1999.
K. Ciesielski, S. Shelah, A model with no magic sets, J. Symb. Log., 64(4), 1999, 1467-1490.

Thank you for your attention!

